

Reward Gateway
Secure Development
Policy

Classification – Confidential

September 2018 – Version 1.3

265 Tottenham Court Road
London
W1T 7RQ
UK

Table of contents

Document purpose
Secure development overview
Practice details

Core security training
Establish security requirements
Create quality gates / bug bars
Perform security and privacy risk assessments
Establish design requirements
Perform attack surface analysis/reduction
Use threat modeling
Use approved tools
Deprecate unsafe functions
Perform static analysis
Perform dynamic analysis
Perform fuzz testing
Conduct attack surface review
Create an Incident Response Plan
Conduct a Final Security Review
Certify release and archive

Test Data
Revision history

1 Reward Gateway | Secure Development Policy | Confidential | September 2018

Document purpose
This document represents the general guidelines on secure software development at
Reward Gateway.

Secure development overview
Reward Gateway has adopted elements of Microsoft's Secure Development Life Cycle
for Agile. These are as follows:

Practice details

Core security training
This practice is a prerequisite for all subsequent steps and implementing a Secure
Development Life Cycle. Foundational concepts for building better software include
secure design, secure coding, security testing, and best practices surrounding
privacy.

When? – Before sprints start.

How? – Training is performed on an on-going basis .

Establish security requirements

Security and privacy analysis includes defining minimum security and privacy criteria
for a project and creating the relevant work items.

When? – This should be done towards the start of the project and identified through
the user stories.

How? – A common set of Security Requirements should be drafted.

2 Reward Gateway | Secure Development Policy | Confidential | September 2018

https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://rewardgateway.atlassian.net/wiki/display/RG/Presentations

Create quality gates / bug bars

Defining minimum acceptable levels of security and privacy quality at the start helps a
team understand risks associated with security issues, as well as identifying and fixing
security bugs during development. This applies the standards throughout the entire
project.

When? – This should be identified before a project is started.

How? – Reward Gateway have chosen to set this bug bar at zero for all new projects.
No project will be shipped if a readily identifiable security bug exists.

Perform security and privacy risk assessments

Examining software design based on costs and regulatory requirements helps a team
identify which portions of a project will require threat modeling and security design
reviews before release of a feature, product, or service.

When? – This should be done as part of the project.

How? – Reward Gateway already consider Security and Privacy to be the highest
operational priority. Any new feature should obey the existing Privacy Policy or
require an amendment to it. Product Managers should readily identify the situations
that this is required prior to a project being started. Further training will be required
and given in this area.

Establish design requirements

Addressing security and privacy concerns early helps minimise the risk of disruption.
Validating all design specifications against a functional specification involves accurate
and complete design specifications, including minimal cryptographic design
requirements and a specification review.

When? – This is an ongoing exercise throughout the project.

How? – This is done throughout the project on the user stories as the Acceptance
Criteria provided by the Product Manager, or identified during Sprint Planning.
Cryptographic algorithms should be adopted based on Reward Gateway's Acceptable
Encryption Policy.

Perform attack surface analysis/reduction

Reducing the opportunities for attackers to exploit a potential weak spot or
vulnerability requires thoroughly analysing overall attack surface. This includes

3 Reward Gateway | Secure Development Policy | Confidential | September 2018

https://vip.rewardgateway.com/PrivacyPolicy

disabling or restricting access to system services, applying the principle of least
privilege, and employing layered defenses wherever possible.

When? – This is an ongoing exercise but any formal requirements should be
identified at the start.

How? – For most Reward Gateway projects, this step is not required as the attack
surface is known to be the web-facing elements on the frontend and in Reward
Manager. A common list of attack surfaces will be produced. If a new API is being
introduced or used, it should first be evaluated for weaknesses.

Use threat modeling

Applying a structured approach to threat scenarios during design helps a team more
effectively and less expensively identify security vulnerabilities, determine risks from
those threats, and establish appropriate mitigations.

When? – Every sprint.

How? – This step will require training from the Information Security Manager. A
common list of attack surfaces will be produced.

Use approved tools

Publishing a list of approved tools and associated security checks (such as
compiler/linker options and warnings) helps automate and enforce security practices
easily and at a low cost. Keeping the list regularly updated means the latest tool
versions are used and allows inclusion of new security analysis functionality and
protections.

When? – Every sprint.

How? – Reward Gateway do not have an approved set of tools for development but
do require an environment controlled by Puppet to be used. This environment has
been extensively tested and hardened with the relevant configuration settings in
place to match the live environment.

Deprecate unsafe functions

Analysing all project functions and APIs, banning those determined to be unsafe,
helps reduce potential security bugs with very little engineering cost. Specific actions
include using header files, newer compilers, or code scanning tools to check code for
functions on the banned list and then replacing them with safer alternatives.

When? – Every sprint.

4 Reward Gateway | Secure Development Policy | Confidential | September 2018

https://rewardgateway.atlassian.net/wiki/display/RG/Developer+Environments

How? – These are documented in the Code Review checks which are performed prior
to work being merged into the development branch. This covers the use of
deprecated functions and banned PHP constructs. Third-party libraries are updated
based on the output from SensioLabs Security Advisories Checker by the continuous
integration server.

Perform static analysis

Analysing the source code prior to compile provides a scalable method of security
code review and helps ensure that secure coding policies are being followed.

When? – Every sprint.

How? – PHP is a dynamic language meaning that traditional static analysis cannot be
performed. Instead, we use tools provided by the PHP community, in particular, the
PHP Quality Assurance Toolchain (used on each developer workstation) and
Scrutinizer CI are both an integral part of the daily integration checks. BlackDuck
scans the code base daily and alerts on known security vulnerabilities and new
security threats.

Perform dynamic analysis

Performing runtime verification, checks software functionality using tools that monitor
application behavior for memory corruption, user privilege issues, and other critical
security problems.

When? – At sprints across the project.

How? – PHP does not readily suffer from issues such as memory corruption, but user
privilege and other security problems may be identified during the test process.
These should be created as work items on the project and fixed before deployment.
Other issues can be identified by Nessus which is configured to perform web
application scan each week. Output is reviewed by the Security Team.

Perform fuzz testing

Inducing program failure by deliberately introducing malformed or random data to an
application helps reveal potential security issues prior to release, while requiring
modest resource investment.

When? – At sprints across the project.

How? – Once code has entered production, fuzz testing is performed by the Nessus
Web Scanner on a weekly basis, but mod_security is installed and should mitigate
many attempted attacks before they reach the application-level – this is not a reason

5 Reward Gateway | Secure Development Policy | Confidential | September 2018

https://rewardgateway.atlassian.net/wiki/display/RG/Code+Review+Checklist
https://security.sensiolabs.org/check
http://phpqatools.org/
https://scrutinizer-ci.com/
https://www.blackducksoftware.com/
https://www.modsecurity.org/

to not write secure code! Manual penetration tests are commissioned by Reward
Gateway on an annual basis but clients may perform their own test more often.

Conduct attack surface review

Reviewing attack surface measurement upon code completion helps ensure that any
design or implementation changes to an application or system have been taken into
account, and that any new attack vectors created as a result of the changes have
been reviewed and mitigated, including threat models.

When? – At sprints across the project.

How? – For most Reward Gateway projects, this step is not required as the attack
surface is known to be the web-facing elements on the frontend and in Reward
Manager. These will be evaluated as part of the Code Review process and other tests
documented in this page.

Create an Incident Response Plan

Preparing an Incident Response Plan is crucial for helping to address new threats
which can emerge over time. It includes identifying appropriate security and
emergency contacts, as well as establishing security servicing plans for code inherited
from other groups within the organisation and for licensed third-party code.

When? – This should be conducted at some point before the project is deployed.

How? – Reward Gateway has a set of incident response plans as part of the ISO
27001 compliance. These cover the most likely situations, such as data loss and
privacy breaches, and provide action plans to enact on these events.

Conduct a Final Security Review

Deliberately reviewing all security activities that were performed helps ensure
software release readiness. The Final Security Review (FSR) usually includes
examining threat models, tools outputs, and performance against the quality gates
and bug bars defined during the Requirements Phase. The FSR results in one of three
different outcomes: Passed FSR, Passed FSR with exceptions, FSR with escalation.

When? – Every sprint.

How? – Final Security Review should be conducted by the Team Leader as part of
each sprint. Ultimately, the Final Security Review is part of the Code Review
performed when work is merged into the main branch. Passing FSR is indicated by the
work being approved by the reviewers and merged with comments being used to
document any exceptions.

6 Reward Gateway | Secure Development Policy | Confidential | September 2018

https://rewardgateway.atlassian.net/wiki/display/RG/Making+a+Change
https://rewardgateway.atlassian.net/wiki/display/RG/Code+Review+Checklist

Certify release and archive

Certifying software prior to a release helps ensure security and privacy requirements
are met. Archiving all pertinent data is essential for performing post-release servicing
tasks and helps lower the long-term costs associated with sustained software
engineering.

Archiving should include all specifications, source code, binaries, private symbols,
threat models, documentation, and emergency response plans, as well as license and
servicing terms for any third-party software.

When? – Every sprint.

How? – Source code should all be kept in the git repositories and follow the
versioning flow outlined in the Development Process. Licensing and other
documentation should be maintained throughout the project life cycle in Confluence.

Test Data
Production data shall not be used for testing and is held exclusively in the Production
and Disaster Recovery environments. Test data in the Staging environment is based
on an anonymised copy of the production data generated by scripts controlled by the
DevOps Engineers.

Test data in Development environments is generated independently to all of these
from scratch.

Revision history

Rev Date Author Description Approved Date

1.0 08.06.2015 Will Tracz Initial draft. Richard
Hurd-Wood

27.08.2015

1.1 08.03.2016 Asen
Varsanov

Minor review. Richard
Hurd-Wood

23.03.2016

1.2 01.03.2017 Liam
Jones

Rebrand and general clean. Will Tracz 03.03.2017

1.3 21.09.2018 Asen
Varsanov

Review and update. Will Tracz 24.09.2018

7 Reward Gateway | Secure Development Policy | Confidential | September 2018

https://rewardgateway.atlassian.net/wiki/display/RG/Process

